A new mechanism for low and temperature-independent elastic modulus
نویسندگان
چکیده
The first Elinvar alloy, FeNiCr, which has invariant elastic modulus over a wide temperature range, was discovered almost 100 years ago by Guillaume. The physical origin of such an anomaly has been attributed to the magnetic phase transition taking place in the system. However, the recent discovery of non-magnetic Elinvar such as multi-functional β-type Ti alloys has imposed a new challenge to the existing theories. In this study we show that random field from stress-carrying defects could suppress the sharp first-order martensitic transformation into a continuous strain glass transition, leading to continued formation and confined growth of nano-domains of martensite in a broad temperature range. Accompanying such a unique transition, there is a gradual softening of the elastic modulus over a wide temperature range, which compensates the normal modulus hardening due to anharmonic atomic vibration, resulting in a low and temperature-independent elastic modulus. The abundance of austenite/martensite interfaces are found responsible for the low elastic modulus.
منابع مشابه
Implementing the New First and Second Differentiation of a General Yield Surface in Explicit and Implicit Rate-Independent Plasticity
In the current research with novel first and second differentiations of a yield function, Euler forward along with Euler backward with its consistent elastic-plastic modulus are newly implemented in finite element program in rate-independent plasticity. An elastic-plastic internally pressurized thick walled cylinder is analyzed with four famous criteria including both pressure dependent and ind...
متن کاملStructural and mechanical properties of AFe2O4 (A = Zn, Cu0.5Zn0.5, Ni0.3Cu0.2Zn0.5) nanoparticles prepared by citrate method at low temperature
In this work, the structural and elastic moduli properties of ZnFe2O4, Zn0.5Cu0.5Fe2O4, and Ni0.3Cu0.2Zn0.5Fe2O4 ferrites prepared by the citrate method have been investigated. The structuralcharacterization of the samples is evidence for a cubic structure with Fd-3m space group. TheHalder-Wagner analysis was used to study crystallite sizes and lattice strain and also stressand energy density. ...
متن کاملTemperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments
Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...
متن کاملUsing an Elastic, Expandable Sealant System for Zonal Isolation of Maroon Wells: a Laboratory Study
An oil and gas well cementing in Gachsaran formation, where sustained annular pressure has been reported in many wells, presents a big challenge in Maroon field. The main challenges are preventing gas migration and achieving zonal isolation using a competent cement sealant system which is able to withstand downhole stresses and high temperatures during production cycles. Unlike conventional cem...
متن کاملGelation and Retrogradation Mechanism of Wheat Amylose
The flow behavior, dynamic viscoelasticity, and optical rotation of aqueous solutions of wheat amylose were measured using a rheogoniometer and a polarimeter. The amylose solutions, at 25 °C, showed shear-thinning behavior at a concentration of 1.2%, but plastic behavior at 1.4 and 1.6%, the yield values of which were estimated to be 0.6 and 1.0 Pa, respectively. The viscosity of the wheat amyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015